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Abstract

This paper validates an approach to damage detection and localization based on finite-element model updating

(FEMU). The approach has the advantage over other existing methods to FEMU that it simultaneously updates all three

finite-element model matrices at the same time preserving their structure (connectivity), symmetry and positive-

definiteness. The approach is tested in this paper on an experimental setup consisting of a steel cable, where local mass

changes and global change in the tension of the cable are introduced. The new algorithm is applied to identify the size and

location of different changes in the structural parameters (mass, stiffness and damping). The obtained results clearly

indicate that even small structural changes can be detected and localized with the new method. Additionally, a comparison

with many other FEMU-based methods has been performed to show the superiority of the considered method.

r 2006 Published by Elsevier Ltd.
1. Introduction

Finite-element model updating (FEMU) [1–3] is a data-driven approach to the problem of detecting and
localizing damages in industrial structures. Although, numerous publications have appeared recently in the
literature [4–17], most of the existing methods are unable to simultaneously update all of the finite element
model (FEM) matrices and at the same time keeping their structural properties, such as connectivity (sparsity/
structure), symmetry and positive-definiteness. As pointed out in Ref. [1], the FEMU problem has not yet been
solved satisfactorily and further research is still needed.

A well-known difficulty in trying to update all FEM matrices from vibration data is the non-uniqueness of
solution. This difficulty is usually circumvented by updating one (or at most two) of the FEM matrices so that
it is as closely as possible to the corresponding nominal one [4,13,7,14,1]. The usual equality constraints, added
to this cost function, are the mass-orthogonality of the mode shapes, the quadratic eigenvalue equation and
symmetry. The main advantage of the so-defined FEMU problem is that, using the Lagrange multiplier
ee front matter r 2006 Published by Elsevier Ltd.
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technique, one can derive an analytic solution to the problem. Shortcoming is that there is no guarantee that
the updated matrix will be positive-definite. Moreover, such updating destroys the connectivity of the updated
matrix.

In an attempt to deal with the problem of preserving the sparsity in the updated stiffness matrix K, Smith
[14] includes a sparsity constraint into the problem that resulted in an iterative optimization problem. The
alternating projection method is subsequently used to solve the problem. A similar idea is pursued by Abdalla
in Ref. [10], where additional attention is paid to the fact that the modal parameters are in practice inaccurate
and therefore the standard equality constraints maybe inconsistent. To deal with that problem the stiffness
matrix K is updated in such a way that it is symmetric positive-definite, it shares the same structure as the
nominal matrix KN and makes the norm of the eigenvalue equation as small as possible. Again, the resulting
optimization problem is solved using the alternating projection method that has a rather slow convergence.

The problem considered in this paper is even more general: it is aimed to update all three FEM matrices
simultaneously such that they (a) remain symmetric and positive semi-definite, (b) share the same sparsity as
the nominal matrices, and (c) try to match the current modal data as closely as possible (in the sense of norm,
defined later in the paper). In order to make sure that the resulting solution is unique it is assumed that one, or
at most a few, non-zero elements of one of the FEM matrices are known or remain constant. In a real-life
structure these can, for instance, correspond to nodes with increased reliability where the chance of structural
damage is reduced. In cases that no a priori information is present about which elements to consider as fixed,
an additional term can be added to the cost function that punishes the deviations from the nominal values,
which makes the optimal solution unique. Clearly, this approach is much less restrictive than the standard
assumption that one of the matrices is completely known.

An approach to solve the above general problem formulation was recently proposed in Ref. [18]. In the
present paper this method is experimentally validated on a test setup consisting of a steel cable located at
EMPA, Switzerland. The cable is excited by a shaker and several accelerometers are used to measure the
vibrations. The considered test scenarios consist of attaching additional mass elements at certain locations of
the cable, which cause changes in some entries of the mass matrix, as well as changing the tension of the cable
which, in turn, changes the stiffness matrix. These changes are then to be identified by the proposed algorithm.
It will be demonstrated that the new method is indeed capable of accurately detecting and localizing the
increased mass even though only one entry of the mass matrix is assumed as constant, namely the first entry on
the main diagonal. To highlight the performance of the method, it is compared to a number of other existing
methods. The results of this comparison clearly highlight the outstanding performance of the approach
proposed in this paper.

The paper is structured as follows. In Section 2, the experimental setup is explained and FEM of the cable is
summarized. Section 3 contains the problem formulation and a brief explanation of the FEMU method used.
The experimental results are reported and discussed in Section 4, where the new method is applied to the
problem of identifying the locations and sizes of changed structural parameters (mass, stiffness and damping).
For comparison, many other existing methods have also been implemented and tested on the same data and it
is demonstrated that the new approach outperforms the others. After the acknowledgements in Section 6, the
paper is concluded with some final remarks in Section 5.
2. Application

2.1. System description

The structure under consideration is a 15.50m long steel wire strand that is tensioned with 33.3 kN. The
setup is schematically visualized in Fig. 1. The cable is excited by an electro-dynamically driven shaker
positioned at 14.34m, depicted on Fig. 2 (left). The shaker force is measured by three force transducers whose
sum is the measured excitation force, see Fig. 2 (right). The input signal of the shaker is a sweep function that
excites the cable for 300 s starting at 0.5Hz and stopping at 22Hz. In this way, the first eight cable modes are
excited as can be seen from the power spectral density estimate in Fig. 3. Nine accelerometers are used as
sensors. Their locations throughout the cable, together with some other cable parameters, are given in Table 1.
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Fig. 1. Scheme of the test cable.
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Fig. 2. Left: Shaker connected to 15.50m long steel wire strand. Right: Measured shaker force during sweep excitation.
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Fig. 3. Measured power spectral density estimate of acceleration at 0.775m.
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2.2. Test cases

There are three sets of test scenarios used to validate the FEMU method considered in this paper.

2.2.1. Local mass changes

Additional weights are attached to the cable in order to change the nominal cable parameters. The nominal
cable weight per unit length is 6.03 kg/m, see Table 1. The weight of the structure is changed by adding either
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Table 1

Cable parameters and sensor locations

Parameter Variable Value

Cable length (m) l 15.5

Shaker position (m) ps 14.3374

Cable weight per unit length (kg/m) dl 6.0377

Cable tension (N) T 33:3� 103

Position of sensor no. 1 (m) — 0.775

Position of sensor no. 2 (m) — 3.1

Position of sensor no. 3 (m) — 3.4875

Position of sensor no. 4 (m) — 4.2625

Position of sensor no. 5 (m) — 6.2

Position of sensor no. 6 (m) — 6.5875

Position of sensor no. 7 (m) — 8.1375

Position of sensor no. 8 (m) — 10.075

Position of sensor no. 9 (m) — 14.3375

Fig. 4. Left: Nominal cable with no additional masses. Middle: Additional small mass. Right: Additional big mass.
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a small mass (2.517 kg) or a big mass (12.840 kg) at an arbitrary location as depicted on Fig. 4. Experiments
are made with these masses attached to the cable at two different positions, see Table 2. These experimental
test scenarios are used to validate the new method and to compare it to a number of existing FEMU methods,
namely those listed in Table 5.
2.2.2. Local mass and global stiffness change

This set of test scenarios consist of two experiments: one nominal, and another one in which two changes
have been introduced, namely an increased local mass at node 19 and an increased cable tension. Table 3
summarizes these two test scenarios.
2.2.3. Local changes in mass, stiffness and damping

The experimental setup does not make it possible to introduce simultaneously local changes in mass,
damping and stiffness at specific nodes. For that reason, an additional test scenario has been generated in
simulation in order to test the performance of the method in the most general case of changes in all three FEM
matrices (Table 4). Although this test scenario is rather idealistic since the modal parameters are exactly
known at all degrees of freedom (dof), it is still useful for the purposes of comparison between the novel
method and other existing methods under perfect conditions.
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Table 2

Test scenarios: mass change

Scenario Additional mass (kg) Position (m) Node in FEM

1 12.84 4.65 12

2 2.517 4.65 12

3 12.84 5.0375 13

4 2.517 5.0375 13

Table 3

Test scenarios: mass and cable tension change

Scenario Additional mass (kg) Node Cable tension (kN)

5 — — 36.5

6 7.363 19 38.2

Table 4

Simulation test scenario: local changes in mass, damping and stiffness

Scenario Change m Node Change k Node Change c Node

7 þ5 12 �10% 13 þ0:3 26
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2.3. Finite-element model of the cable

For modelling purposes, the cable is divided into 40 pieces of equal length (0.3875 [kg]) resulting in the
following FEM:

MN €xðtÞ þ CN _xðtÞ þ KNxðtÞ ¼ BFmðtÞ, (1)

where MN ¼MT
N40, CN ¼ CT

NX0 and KN ¼ KT
NX0 are the mass, damping and stiffness matrices of the

cable, xðtÞ 2 Rn is the vector of the generalized displacements at the n ¼ 39 nodal points, FmðtÞ 2 R is the
shaker excitation force, and B 2 Rn is a vector that represents the location of the shaker at node 37, i.e. all
elements are equal to zero except the 37th element, which is equal to one. Let ei represent the ith row of the
39� 39 identity matrix. Then the measured output signal is given by

yðtÞ ¼ ½e2 e8 e9 e11 e16 e17 e21 e26 e37�
T €xðtÞ. (2)

The FEM matrices in Eq. (1) have the following structure:

MN ¼

m1j2 m2j2

m2j2 m1j2 þm1j3 m2j3

. .
. . .

. . .
.

m2jn�2 m1jn�2 þm1jn�1 m2jn�1

m2jn�1 m1jn�1

2
66666664

3
77777775
, (3)
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CN ¼

c1j2 c2j2

c2j2 c1j2 þ c1j3 c2j3

. .
. . .

. . .
.

c2jn�2 c1jn�2 þ c1jn�1 c2jn�1

c2jn�1 c1jn�1

2
66666664

3
77777775
, (4)

KN ¼

k1j2 k2j2

k2j2 k1j2 þ k1j3 k2j3

. .
. . .

. . .
.

k2jn�2 k1jn�2 þ k1jn�1 k2jn�1

k2jn�1 k1jn�1

2
66666664

3
77777775
, (5)

where nominally

m1ji ¼
1

3
mdl; c1ji ¼

1

3
cdl; k1ji ¼

T

dl
,

m2ji ¼
1
2m1ji; c2ji ¼

1
2c1ji; k2ji ¼ �k1ji (6)

for i ¼ 1; 2; . . . ; n.
The cable model (3)–(4) is a linear truss element model; for more details on the derivation of such models

please consult [19]. The numerical values for the parameters m, T and dl are reported in Table 1; the damping
parameter c is not given since it is not measured.

3. The new FEMU approach

3.1. Problem formulation and preliminaries

Consider the FEM (1) representing the nominal, n-dof undamaged structure. Suppose further that, as a
result of structural damage, the FEM becomes

M €xðtÞ þ C _xðtÞ þ KxðtÞ ¼ 0, (7)

where the structure (often termed connectivity in the literature) of the matrices fM;K;Cg is the same as the
nominal matrices fMN ;KN ;CNg, given in Eqs. (3)–(5), but the values for one or more of the entries
fmijq; kijq; cijqg have changed. The goal of the paper is as follows: given the measurements of yðtÞ, defined in
Eq. (2), estimate the entries fmijq; kijq; cijqg of the FEM matrices fM;K;Cg. By comparing these estimates to
their nominal values one can both detect, localize and quantify damages in the structure.

The approach proposed in this paper uses the measurement data to estimate the modal parameters, which
are then used in the process of identification of the structural parameters. Since not all dof are measured, the
mode shapes can only be estimated at the dof where the sensors are located. In this paper the missing values of
the mode shapes are recovered by means of the so-called B-spline interpolation technique. Furthermore, it is a
well-known fact that, in practice, only the modal parameters for the first several modes can be estimated
accurately. In this paper all modes are estimated via the state–space model, but only the first five are used for
the identification of the structural parameters.

Given the FEM matrices, the modal parameters (i.e. the natural frequencies oi 2 R, damping ratios xi 2 R,
and the mode shapes /i 2 Cn, i ¼ 1; 2; . . . ; n) can be computed by solving the following:

M/il
2
i þ C/ili þ K/i ¼ 0; i ¼ 1; 2; . . . ; n, (8)

where li 2 C are the eigenvalues and /i—the eigenvectors (coinciding with the mode shapes of the structure).
From the eigenvalues, the natural frequencies and the damping ratios can be computed. Collecting the
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eigenvectors and eigenvalues in the matrices

U ¼ ½/1 /2 . . . /n� 2 Cn�n,

K ¼ diagf½l1 l2 . . . ln�g 2 Cn�n, (9)

Eq. (8) can be written in a matrix form as the following quadratic eigenvalue problem:

MUK2
þ CUKþ KU ¼ 0. (10)

In the case of viscous damping (Ca0), the following general orthogonality conditions hold for some vectors
v1, v2 2 C2n [20]:

WT
C M

M 0

� �
W ¼ diagfv1g, (11)

WT
K 0

0 �M

� �
W ¼ diagfv2g, (12)

where diagfvg denotes a diagonal matrix the vector v on the main diagonal, and where

W ¼
U U�

UK U�K�

� �
. (13)

It is easy to show that, when the C matrix is zero, the general orthogonality conditions (11) and (12) simplify
to the following well-known standard conditions

UTMU ¼ diagfw1g,

UTKU ¼ diagfw2g. (14)

The mode shapes are sometimes normalized with respect to the mass matrix, although such normalization is
not required by the method used in this paper. The vectors v1 and v2 are considered here as unknown.

Assume that the first r modes are estimated and represented by the r pairs f/̂i; l̂ig, and define the matrices

Û ¼ ½/̂1 /̂2 . . . /̂r� 2 Cn�r; K̂ ¼

l̂1

. .
.

l̂r

2
664

3
775 2 Cr�r. (15)

Clearly, due to the inaccuracies in these estimated quantities, substituting them, via W, in the orthogonality
conditions (11)–(12) will, in general, result in non-diagonal matrices. Similarly, Eq. (10) does not necessarily
hold with fU;Kg replaced by fÛ; K̂g. Eqs. (10)–(12)) will hold only approximately. Therefore, these are only
used in this paper for defining the cost function to be optimized rather than constraints that can turn out to be
infeasible.
3.2. Optimization problem

The FEMU approach, originally proposed in Ref. [18], is summarized here. The method is based on an
optimization problem in the form of a least-squares with positivity constraints. Such problems can be solved
very efficiently.

In defining the cost function, the three conditions (10)–(12) are used. In order to get rid of the unknown
vectors v1 and v2, and bearing in mind that these equations will hold only approximately for the estimated
modal parameters, these are written as follows:

MÛK̂
2
þ CÛK̂þ KÛ � 0, (16)
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ŵ
T

i

C M

M 0

� �
ŵj � 0; 8i; jai, (17)

ŵ
T

i

K 0

0 �M

� �
ŵj � 0; 8i; jai, (18)

where ŵi is the ith column of the matrix

Ŵ ¼
Û Û

�

ÛK̂ Û
�
K̂
�

" #
2 C2n�2r. (19)

In addition to the conditions (16)–(18), constraints are introduced to keep the structural properties of the
updated FE matrices, namely the positive-definiteness, the symmetry and the sparsity. To this end, it is first
assumed that the FEM matrices can be rewritten as follows:

MN ¼
Xnm

i¼1

Mimi; KN ¼
Xnk

i¼1

Kiki; CN ¼
Xnc

i¼1

Cici. (20)

For the considered application, Eqs. (3)–(5) and (6) can readily be rewritten in the form (20) with

mi ¼ m1ji; ki ¼ k1ji; ci ¼ c1ji (21)

and for i ¼ 1; 2; . . . ; ðn� 1Þ

Mi ¼ Ci ¼
1

6

0i�1

2 1

1 2

0n�i�1

2
6664

3
7775; Ki ¼

0i�1

1 �1

�1 1

0n�i�1

2
6664

3
7775. (22)

Note that the representation in Eq. (20) is rather general and can be applied to a wide variety of practical
problems. In this way those quantities in the FEM matrices that can undergo changes and need to be
monitored are ‘‘pulled out’’, i.e. the mi’s, ki’s and ci’s, so that the matrices fMi;Ci;Kig are constant and known.
In fact, in many practical situations, these matrices will be symmetric and positive definite, so that

miX0; 8i; ¼) MX0,

kiX0; 8i; ¼) KX0,

ciX0; 8i; ¼) CX0. (23)

Hence, the considered structural constraints on the FEM matrices are represented by Eqs. (20)–(23).
Substitution of these into our original conditions (16)–(18) leads toXnm

i¼1

MiÛK̂
2
mi þ

Xnc

i¼1

CiÛK̂ci þ
Xnk

i¼1

KiÛki � 0, (24)

ŵ
T

q

Pnc

i¼1 Cici

Pnm

i¼1MimiPnm

i¼1 Mimi 0

" #
ŵj � 0; 8jaq. (25)

ŵ
T

q

Pnk

i¼1Kiki 0

0 �
Pnm

i¼1 Mimi

" #
ŵj � 0; 8jaq, (26)

miX0; kiX0; ciX0; 8i. (27)

Generally speaking, the idea pursued in this paper is to update the FE matrices in such a way that a weighted
combination of the Frobenius norms of (24)–(26) is minimized while at the same time the positivity constraints
(27) are satisfied. Since the conditions (24)–(26) are complex due to the complex modal parameters, we will
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proceed by transforming them into an equivalent set of real conditions. For that purpose, denote

ÛM ¼ ½ReðÛK̂
2
Þ; ImðÛK̂

2
Þ� ¼ ½/̂M ;1; . . . ; /̂M ;2r�,

ÛC ¼ ½ReðÛK̂Þ; ImðÛK̂Þ� ¼ ½/̂C;1; . . . ; /̂C;2r�,

ÛK ¼ ½ReðÛÞ; ImðÛÞ� ¼ ½/̂K ;1; . . . ; /̂K ;2r�. (28)

With this notation at hand, it is not difficult to see that conditions (24)–(26) can be rewritten as

Jð1Þ ¼
Xnm

i¼1

ðMiÛM Þmi þ
Xnc

i¼1

ðCiÛCÞci þ
Xnk

i¼1

ðKiÛK Þki � 0, (29)

J
ð2Þ
jq ¼

Xnc

i¼1

ð/̂
T

K ;jCi/̂K ;qÞci þ
Xnm

i¼1

ð/̂
T

C;jMi/̂K ;q þ /̂
T

K ;jMi/̂C;qÞmi � 0, (30)

J
ð3Þ
jq ¼

Xnk

i¼1

ð/̂
T

K ;jKi/̂K ;qÞki �
Xnm

i¼1

ð/̂
T

C;jMi/̂C;qÞmi � 0. (31)

Then the optimization problem is defined as follows:

minimize
mX0;cX0;kX0

kJð1Þk2F þ
X
jaq

ðajJ ð2Þjq j
2 þ bjJ ð3Þjq j

2Þ, (32)

where a and b are two non-negative weighting scalars that can be used to achieve some desired trade-off
between the three different objectives, and where it is denoted

m ¼ ½m1; . . . ;mnm
�T; c ¼ ½c1; . . . ; cnc

�T; k ¼ ½k1; . . . ; knk
�T. (33)

This optimization problem is easily transformed into a standard least-squares optimization problem of the
form (see Appendix A for details)

minimize
mX0;cX0;kX0

kUMmþUccþUKkk
2
2, (34)

where UM , UC and UK are known matrices.

Remark 1. Clearly, the optimization problem (34) allows an analytic solution in the case there are no
positivity constraints. In fact, since the true FEM parameters are positive and achieve a value of zero for the
cost function when the true modal parameters are used in the optimization, one can actually expect that, if the
estimates of the modal parameters are accurate enough, the unconstrained solution of Eq. (34) will be non-
negative. The difficulty here is that the estimated modal parameters are never that accurate, so that the
unconstrained solution cannot be guaranteed to be positive. If it is not positive, one can use it to initialize an
active set algorithm, see for instance Ref. [21]. We point out that the active set algorithm computes the exact

constrained solution in a finite number of iterations. The MATLAB function lsqlin from the Optimization
toolbox also efficiently implements such an algorithm.

Note that multiplication of Eq. (7) with a positive scalar results in different FEM matrices that have the
same structure and produce the same output yðtÞ. Therefore, given only output measurements, no method will
be able to uniquely estimate all entries in the FEM, not even by exploiting the structural properties of the
FEM model (i.e. symmetry, positive-definiteness, connectivity). To circumvent this problem, the so-called
reference basis methods [4,7,13] usually assume that either one of the three matrices is known (or remains
unchanged), or that the mode shapes U are exact and are mass-normalized, i.e. UTMU ¼ I. The later
assumption is obviously not practical when the mass matrix can also undergo changes as a result of damage.
In this paper we circumvent this non-uniqueness problem by assuming that only one (or at most a few) matrix
entry, say m1j1, remains unchanged. With a few fixed entries of m, c and/or k, the optimization problem (34)
takes the form min kAxþ bk22, where the new variable x contains the unknown (free) entries of the vectors m, c
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and k. In most practical problems the matrix A will be left-invertible, so that the optimal solution is indeed
unique. If A turns out not to be full column rank for some specific problem, one can either consider using some
more modal estimates or fixing some other entries of m, c and/or k.

Another way to circumvent the problem of non-uniqueness is to add up another term to the cost function
(32) that penalizesany change of the vectors m, c and k from their nominal values, i.e.

minimize
mX0;cX0;kX0

kUMmþUccþUKkk
2
2 þ d

m�mnom

k� knom

c� cnom

2
64

3
75

�������
�������
2

2

. (35)

The weight d is usually a small positive number, as otherwise the second term would become significant and
will push the optimal solution towards the nominal values of the parameters.
4. Experimental results

In this section, both experimental and simulation results are presented and the FEMU algorithm
is compared to some other existing methods based on FEM updating. The test scenarios are explained in
Section 2.2.

The starting point is the measured vibration data. In order to estimate the modal parameters, a state–space
model is first identified using a Subspace Model Identification method [22]. When the input signal is not
measured the stochastic subspace identification methods [23,24] can be used instead to identify a state–space
model. Subsequently, the modal parameters for the first five modes are computed from the state–space model
at the dof where the sensors are located. These are next expanded using B-spline approximation method. Once
the modal parameters are estimated at all dof, the method discussed in Section 3.2 is applied to identify the size
and the location of the changed structural parameter(s). The results obtained are compared to a number of
other algorithms in order to highlight the superiority of the new method presented. In the following
subsections, these steps are described in more detail.
4.1. Step 1: subspace model identification

The first step is to identify a state–space model of the structure. For each test scenario performed, input-
output measurement data is collected for 300 s at a sampling frequency of 2048Hz, coming up to a total of
614 400 data points per sensor per test scenario. In order to process this huge amount of data, it was first split
into 20 data batches. Since the input signal is a frequency sweep, one cannot just use one such data batch to
identify the model, because in such a case the data will represent only a narrow frequency range. For that
reason, the whole data has been used for model identification. The problem with the data dimension was been
circumvented by making use of the subspace model identification (SMI) toolbox [25], that has the ability to
process all the data by iteratively processing the different data batches.

The Bode magnitude plots of the identified state–space models for the four test scenarios considered,
explained in Section 2.2, are plotted in Fig. 5 (the dashed lines). Also plotted, for comparison, is the Bode
magnitude plots obtained from the analytical model of the cable. On the vertical axis the magnitude is given in
dB (i.e. 20 log10ðmagnitudeÞ).
4.2. Step 2: Modal parameters computation

A state–space model corresponding to the FEM (1) is

_xðtÞ

€xðtÞ

" #
¼

0 I

�M�1K �M�1C

� �
xðtÞ

_xðtÞ

" #
þ

0

M�1B

� �
FmðtÞ,
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Fig. 5. Bode magnitude plots (magnitude [dB] vs. frequency [Hz]) of the analytical model (solid line) and the identified model (dashed line)

for the four considered test scenarios: (a) Case 1, (b) Case 2, (c) Case 3 and (d) Case 4.
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yðtÞ ¼ ½�CaM
�1K � CaM

�1C�
xðtÞ

_xðtÞ

" #
. (36)

From the state–space model one can compute the modal parameters from the eigenvalue decomposition, since
the following holds:

0 I

�M�1K �M�1C

� �
U

UK

� �
¼

U

UK

� �
K. (37)

In this way, one could estimate the modal parameters at all dof. The problem is, however, that the identified
state–space model is not necessarily in the same state basis, so that also the mode shapes are in a different basis
(the eigenvalues are invariant to the state basis). Indeed, with any nonsingular transformation matrix T, one
rewrites Eq. (37) as

T
0 I

�M�1K �M�1C

� �
T�1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

estimated A matrix

T
U

UK

� �� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
eigenvectors

¼ T
U

UK

� �� �
K. (38)

From the estimated A matrix it is difficult to compute the state transformation matrix T which is needed to
transform the mode shapes into the original basis. However, at the dof where the sensors are located the mode
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shapes can be correctly estimated without knowing T by observing that

ð½�CaM
�1K � CaM

�1C�T�1Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{estimated C matrix

T
U

UK

" # !

¼ ½�CaM
�1K � CaM

�1C�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
original C matrix

U

UK

" #
¼ Ûsen, ð39Þ

where Ûsen is defined as follows:

Ûsen ¼

f̂j1;1
f̂j1;2

� � � f̂j1;r

f̂j2;1
f̂j2;2

� � � f̂j2;r

..

. ..
. . .

. ..
.

f̂jl ;1
f̂jl ;2

� � � f̂jl ;r

2
6666664

3
7777775 (40)

with fj1; j2; . . . ; jlg representing the dof where the sensors are located.
To summarize, the subspace identification method estimates a linear discrete-time model of the form

xd ;kþ1 ¼ Adxd ;k þ BdFm;k,

yk ¼ Cdxd;k (41)

from which the mode shapes and eigenvectors (of the continuous-time system) are computed from the
eigenvalue decomposition of Ad

Ad ¼ UKdU
�1. (42)

Here, U represent the mode shapes in some unknown state basis T. To get rid of T, they are related to the
sensor locations as follows:

Ûsen ¼ CdU. (43)

Ûsen is subsequently expanded using B-spline approximation method. For that purpose, Matlab’s Spline
Toolbox [26] has been used.

Note that, unlike the eigenvalues, the mode shapes are the same for the continuous and discrete-time
models. The eigenvalues for the continuous-time model are computed from Kd using the relation

l̂i ¼
log ld;i

Ts

, (44)

where ld ;i is the ith diagonal element of Kd and Ts is the sampling time.
Fig. 6 depicts the mode shapes corresponding to the first five modes, computed for the first four test

scenarios, see Section 2.2.1. These four test scenarios are represented by the four columns. Both the real part
and the imaginary parts are plotted. Each plot depicts the corresponding mode shape as computed from the
nominal (damage-free) analytical model of the cable (the dashed lines), the mode shape estimates at the sensor
locations Ûsen (the nine dots), and spline interpolation of the mode shapes Û which is subsequently used in the
FEMU methods (the solid lines). We point out that the spline interpolation is particularly suitable for the
considered case study as the mode shapes possess certain smoothness properties. Similar is the case with
beams, masts, plates and other less complex structures are considered, where mode shape expansion
techniques based on smoothing curves approximations can also be useful. For general structures, however, the
application of the spline approximation method should be applied with care, possibly only locally at certain
(smooth) parts of the structure and in combination with other existing mode shape expansion methods.
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Fig. 6. Real and imaginary parts of the first five mode shapes for the four considered test scenarios: computed using the nominal analytical
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graph of each row–column pair represents the real part of the corresponding mode shape, while the lower graph—the imaginary part.
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4.3. Step 3: Finite-element model updating

The FEMU algorithm, proposed in this paper, is applied to the estimated modal parameters. The results
are presented in this subsection. It is assumed that only m1 is fixed and the remaining entries of m, as
well as the whole vectors k and c, have to be estimated. Besides the new method, which is used to optimize
the cost function (32) with a ¼ b ¼ 1, thirteen different other methods have been implemented and run on
the data so that a comparison could be made. These algorithms are summarized in Table 5, where their
abbreviations, names, main assumptions, and references, where the methods are described, are reported.
Interestingly, none of these methods is suited for any of the damage cases considered in this paper where
the M matrix changes, the damping matrix is present in the FEM, and the identified mode shapes are not
mass-normalized.
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Table 5

Compared FEMU-based algorithms

Abbr. Name Ass. Refs.

AP Alternative Projection Method M ¼ const:, C ¼ 0 [10]

Baruch Baruch Algorithm M ¼ const:, C ¼ 0 [14,3]

BBI Baruch & Bar Itzhack Algorithm M ¼ const:, C ¼ 0 [10]

BN Algorithm of Berman & Nagy Û
T
MÛ ¼ I , C ¼ 0 [6,3]

Caesar Algorithm of Caesar Û
T
MÛ ¼ I , C ¼ 0 [3]

Chen Algorithm of Chen C ¼ 0 [6]

Friswell Algorithm of Friswell M ¼ const: [7]

Gysin Algorithm of Gysin Û
T
MÛ ¼ I , C ¼ 0 [3]

HB Halevi & Bucher Algorithm M ¼ const:, C ¼ 0 [13]

KH Kenigsbuch and Halevi Algorithm Û
T
MÛ ¼ I , C ¼ 0 [4]

OFEA Output Feedback Eigenstr. Ass. M ¼ const: [3]

SFEA State Feedback Eigenstr. Ass. M ¼ const: [17]

Wei Algorithm of Wei Û
T
MÛ ¼ I , C ¼ 0 [3]
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4.3.1. Local mass changes

To begin with, test scenarios 1–4 are considered (see Section 2.2.1 and Table 2), where only local changes in
some mass element are introduced. The damping and stiffness remain unchanged. Note that algorithms AP,
Baruch, BBI, Friswell, HB, OFEA, SFEA assume that the mass matrix remains unchanged, and therefore
these cannot detect the changes in the mass matrix, introduced in the four test scenarios. The results from
these methods are therefore not plotted in order not to increase the number of lines unnecessarily, which
would only reduce the readability. Hence, in Figs. 7 and 8, only the results obtained with the new method and
with methods BN, Chen, KH, Caesar, and Gysin are reported. Fig. 7 depicts the 39 elements on the first main
diagonal (see first column) and the 38 elements of the second main diagonal (see second column) of the mass
matrix, as estimated by these methods. Additionally, the analytical elements have also been plotted (the
dashed curve) and are considered as the ‘‘true’’ values. We remark that the high peaks after node 35 are due to
the shaker, located at 37, which introduces a large fictitious mass at that point. This mass is unknown and
much larger than the masses of the finite elements. The plots are suitably zoomed so that the region of interest
is best visualized, namely the region up to node 35.

Close inspection of Fig. 7 reveals the following:
�
 For all four test scenarios the proposed approach (solid line) gives the best estimates of the ‘‘true’’
parameters (dashed line). The methods Chen and Gysin are rather insensitive to the increased mass and
provide no means of even detecting the damage. The methods BN, KH and Caesar are clearly able to detect
damage in the cable. However, these methods seem to be unable to accurately enough identify the mass
matrix elements—they result in overly conservative estimates that are way larger than the true values. The
new method clearly outperformed the other methods providing the best estimates throughout all nodes.

�
 The proposed method detects the changes in the mass for all four test scenarios. At first sight, there are also

certain points where false alarms could be triggered, e.g. around nodes 2, 10 and 25. Hence, it is clear that
the small masses are much more difficult to identify.

The estimates of the diagonal elements of the stiffness matrix K are also reported, see Fig. 8. All methods
perform equally well and detect no change there, the deviations from the nominal values being smaller within
10% (only the method Caesar, and may be KH, detect incorrectly a decrease in the stiffness around node 37).

To even more closely compare the methods, Table 6 is provided. The first three columns of the table report
whether or not the algorithms preserve the structural properties of the FEM, namely the symmetry of the
updated matrices, their original sparsity/connectivity, and their positive-definiteness. Besides the new method,
only two of the other compared algorithms preserve all the three of these properties, namely AP and HB.
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Fig. 7. Plots of the elements on the main diagonal (a–d) and the second main diagonal (e–h) of the FEM matrix M (kg). The four rows

represent the four test scenarios: (a),(e) Case 1; (b),(f) Case 2; (c),(g) Case 3 and (d),(h) Case 4. The lines on the plots represent the

following methods: true mass (dashed lines), new method (solid lines), BN (	-marked lines), Chen (&-marked lines), KH (%-marked lines),

Caesar (n-marked lines), and Gysin (B-marked lines).
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Table 6

Comparison of the methods for the four different test scenarios using the cost function (45)

Alg Sym Sprs 40 Case 1 Case 2 Case 3 Case 4

NEW Yes Yes Yes 5:94� 105 7:09� 105 7:15� 105 6:4� 105

AP Yes Yes Yes 1:93� 1019 1:99� 1019 1:48� 1019 1:48� 1019

Baruch No No Yes 7:74� 106 7:96� 106 7:58� 106 7:17� 106

BBI No No No 4:43� 107 4:31� 107 5:31� 107 5:07� 107

BN Yes No Yes 5:5� 108 5:52� 108 5:86� 108 6:25� 108

Caesar Yes No No 2:79� 109 2:77� 109 2:83� 109 3:� 109

Chen Yes No Yes 5:59� 107 6:11� 107 6:76� 107 6:36� 107

Friswell No No No 7:79� 1011 9:46� 1011 1:46� 1014 1:38� 1013

Gysin No No Yes 1:18� 107 1:19� 107 8:41� 106 8:05� 106

HB Yes Yes Yes 5:99� 106 5:96� 106 4:84� 106 4:63� 106

KH No No No 2:13� 109 2:14� 109 2:27� 109 2:38� 109

OFEA No No Yes 6:57� 106 6:56� 106 5:61� 106 5:3� 106

SFEA No No No 1:78� 1010 5:04� 1010 1:92� 1010 7:52� 109

Wei No No No 2:92� 1032 1:94� 1032 7:03� 1032 7:07� 1032

Furthermore, the algorithms are compared with respect to whether or not they preserve the structural properties of the

FEM: symmetry (sym), sparsity (sprs) and positivity (40).
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Fig. 8. Plots of the elements on the main diagonal of the FEM matrix K (N/m) for the four considered test scenarios: (a) Case 1,

(b) Case 2, (c) Case 3 and (d) Case 4. The lines on the plots represent the following methods: true mass (dashed lines), new method

(solid lines), BN (	-marked lines), Chen (&-marked lines), KH (%-marked lines), Caesar (n-marked lines), and Gysin (B-marked lines).
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Furthermore, the table reports the values of the cost function

J ¼ kMÛK̂
2
þ CÛK̂þ KÛk2F (45)

computed with the estimated FEM by the different methods for the four considered test scenarios. Clearly, the
new method outperforms the other methods by achieving the smallest values for this cost function for all test
scenarios. Although not reported in this paper for the sake of brevity, a comparison with respect to the cost
function (32) led to a similar conclusion.

4.3.2. Local mass and global cable tension change

Next, test scenarios 5 and 6 are considered, where test scenario 5 will represent nominal case, and 6
represents damage resulting in a local mass increase at node 19 and a (global) cable tension increase, see Table
3. Note that the cable tension T directly affects the stiffness matrix as can be seen from Eq. (6). Therefore,
besides an increase in m19, we should also be able to observe an increase in the entries estimated vector k or,
equivalently, in the diagonal elements of the matrix K. Indeed, this is what is observed in Fig. 9. Observe that
the mass change at node 19 is again very clearly identifiable. The change in the stiffness can also be easily
detected by noting the increase diagonal elements of the matrix K.

For these test scenarios 5 and 6 no comparison study with the other methods is reported in the paper as the
results are similar to those reported already in the previous subsection.

4.3.3. Simulation of local changes in m, k and c
Finally, we consider a simulation that allows us to validate the performance of the novel method on

idealistic data (the modal parameters are exactly known at all dof), but in the presence of local changes in both
mass, stiffness and damping. The experimental setup does not make it possible to implement such changes.
However, even though this simulation might be of less interest than the experimental results reported above, it
serves as a good basis for another comparison study between the discussed methods in the case when the
modal parameters are given.
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The damage FEM model in this case was formed from Eqs. (3)–(6), with the nominal parameters given in
Table 1, and with additional local changes of m:j12, k:j13 and c:j26, summarized in Table 4.

Fig. 10 depicts the elements on the main diagonals of the matrices M, K and C, respectively, estimated by
the compared methods. Note that besides the new method, only the results with the methods BBI, Chen, KH,
Caesar and HB are presented; the remaining discussed methods have also been tested but resulted very poor
estimates.

The method that best performs on this simulation data is again the novel method considered (solid line),
which was capable to exactly detect the changes in the structural parameters. The true values of the entries on
the main diagonals of the three FEM matrices coincide with the three solid lines on Fig. 10. Note that no other
method was capable to even closely approximate the simulated changes. Clearly, for the damage cases
considered, those methods are much less reliable than the new method. This is due to the fact that the
assumptions that the other methods make (see Table 5) are too restrictive and do not apply to the test
scenarios considered here.
5. Conclusion

This paper summarizes a new approach to damage identification and experimentally validates it
on a problem of damage localization. The starting point of the method is the availability of modal
parameters of the first several modes, which are then used in a novel finite element model updating
(FEMU) method that computes the structural parameters of the system. In this method the finite element
model (FEM) matrices are updated to match best the modal data in terms of the quadratic eigenvalue problem
and a pair of generalized orthogonality conditions. The advantage of this new approach is its ability to
simultaneously update all three FEM matrices and that it explicitly takes into account the structural
constraints, namely the sparsity (connectivity) of the matrices, their symmetry and positive-definiteness.
A comparison with a number of other existing FEMU methods is made to confirm the superiority of the
newly proposed method.
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Appendix A. Least-squares formulation

The optimization problem (32) is easily transformed into a standard least-squares problem with positivity
constraints by observing that

kJð1Þk2F ¼ kvecðJ
ð1ÞÞk22 ¼ kU

ð1Þ
M mþU

ð1Þ
C cþU

ð1Þ
K kk22 (A.1)

with

U
ð1Þ
M ¼ ½vecðM1ÛMÞ; . . . ; vecðMnm

ÛM Þ�,

U
ð1Þ
C ¼ ½vecðC1ÛCÞ; . . . ; vecðCnc

ÛCÞ�,

U
ð1Þ
K ¼ ½vecðK1ÛK Þ; . . . ; vecðKnk

ÛK Þ�. (A.2)

Furthermore, X
jaq
jJ
ð2Þ
jq j

2 ¼ kU
ð2Þ
M mþU

ð2Þ
C ck22,

X
jaq

jJ
ð3Þ
jq j

2 ¼ kU
ð3Þ
M mþU

ð3Þ
K kk22, (A.3)

where
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K ;jM1/̂
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C;q�,
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Therefore, the original cost function (32) takes the form

minimize
mX0;cX0;kX0

U
ð1Þ
M U

ð1Þ
C U

ð1Þ
K

U
ð2Þ
M U

ð2Þ
C 0

U
ð3Þ
M 0 U

ð3Þ
K

2
664

3
775

m

c

k

2
64

3
75

��������

��������
2

2

. (A.5)

Assuming some entries of m, c and/or k are fixed, this problem takes the form min kAxþ bk22 subject to xX0,
that, provided that A is left-invertible, has a unique solution for the new vector of unknowns x that contains
the free elements of the vectors m, c and k.
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